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Auditory Perception

Week 5

Temporal resolution



Modulating a sinusoid
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Domain of temporal resolution

e Fine structure and envelope

- fine structure - relatively fast - reflects
spectral components of sounds in the
sound waveform, and periodicity (in some
definitions)

— envelope is the slower stuff

- think of all waves as being made by
multiplying an envelope against a carrier

ime (m=) Illllzlalﬁllll|izl%ﬁIIII|I2I?I8|IIlllizl?ﬁlllllﬁ:l-ﬁlIllllalglﬁIIII|I3I$ﬁIIII|I3ITﬁIIIlllal?ﬁlllI|I4IJI-IB|IIII|#I?ﬁllll|ﬁ$ﬁllll|ﬁ?ﬁIIII|#I?ﬁllll|?l%ﬁllll|ﬁ?ﬁ

s000 |chanmnel & of 16 wawve

I JMNWW

—&000




Fine structure and envelope
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Envelope - reflects changing amplitude of
signal e.g., over multiple cycles for
periodic sounds



Caveat about ‘temporal resolution’

e Typically defined as reflecting
perception of variations over time in ...

- envelope (and there are different ways to
define envelope)

- rather than fine-structure

e But at least in theory, could concern
temporal variations, for example, in
frequency of a sinusoid



Temporal Resolution for envelope
most often tested in two ways

e Both involve modulation of the amplitude
of waveforms ...
— Gap detection
— Amplitude modulation

e But modulation almost always results in
spectral changes.

e You usually cannot change the temporal
(envelope) properties of a signal without
also changing its spectrum

- leading to uncertainty about what aspect of the
sounds a listener is responding to




The need to eliminate spectral cues

Amplitude modulating signals usually results in
spectral changes (broadening, known as splatter)
- e.g., effect of 10 ms gap in spectrum of 1 kHz sinusoid

Need to avoid listeners hearing spectral changes
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Effects of amplitude modulation
on the spectrum of a sinusoid
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Effects of amplitude modulation
on the spectrum of a white noise
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Effects of AM on the spectrum
of a bandpass noise
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Three ways to avoid the
splatter problem

e Modulate wideband noise stimuli

e Minimise audibility of spectral changes by

— keeping any sidebands in the same auditory
filter as the original signal — allows use of low
AM rates with sine carriers

— and/or adding masking noise to make spectral
changes inaudible

e Modulate wideband noise stimuli and filter
into bands afterwards

— but can change extent/form of modulation



Gap thresholds

Interval 1 Interval 2

Time —»

e Pick the sound with the gap - vary the
gap duration to find threshold

e Thresholds for wide-band noise are around
3 ms



Effects of noise spectrum on gap

detection
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FIGURE 5.4 Gap thresholds for noise bands plotted as a function of the bandwidth of the noise
bands. The upper cutoff frequency (UCF) of the noise bands was fixed at one of three values: 600,
2200, and 4400 Hz. The inset bars illustrate schematically how the bandwidth was varied keeping
the UCF fixed. Gap thresholds decrease progressively with increasing bandwidth, but are almost
independent of UCE The data are from Eddins et al. (1992).
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AM detection - TMTF

e TMTF - temporal modulation transfer function

e Analogous to an ordinary transfer function or
frequency response

— dealing with frequencies of modulation rather than
frequencies of a sinusoidal waveform directly

e A more detailed approach to temporal resolution
— Considers temporal modulation across different single
frequencies of sinusoidal AM

o cf gap detection where in effect the modulator is a pulse
comprising wide range of modulation frequencies

— As for gap thresholds, wide-band noise is an ideal signal
because of the lack of spectral changes.

- Fixed modulation rate - vary depth of modulation to
determine minimum detectable depth



10 Hz modulation rate

20log(m)
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Fundamentals of Hearing: An Introduction

W.A. Yost

Amplitude Modulation Detection

Four sets of amplitude modulated noises each of
500-msec duration with modulation rates of 4, 16,
64, and 256 Hz

For each set: ten comparisons of an unmodulated
noise followed by the amplitude modulated noise

The depth of modulation starts at 50% or 20log(m)
= -6 dB and decreases in 5% steps ending at 5%.

Count how many of the ten pairs have a noticeable
modulation compared to the 1st unmodulated noise
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<« better performance

where m is modulation index

Modulation Depth (dB)
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Results from a TMTF
measurement

e Thresholds expressed in dB as 20 log(m)
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1000

m = 1 gives 0 dB
(modulation depth =
carrier amplitude)

m = 0.05 gives -26 dB

Upper limit of
amplitude modulation
detection between 500
and 1000 Hz



Results from a TMTF
measurement (inverted)

Modulation frequency (Hz)
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<« worse performance
Modulation depth (dB)

Remember: a transfer function is something like a frequency
response. How well do the modulations get through?

What kind of modulation filter is this?



Translating to the clinic:
Auditory Neuropathy Spectrum
Disorder (ANSD)



Temporal resolution in ANSD

e ANSD defined by intact OHCs and
normal OAEs but lack of CAP and
ABR responses.

e Near normal audiometric thresholds
but often severe problems with
speech perception

e Problem in hair cell? Synapse? ???

e Likely to involve disruption of phase-
locking in auditory nerve



Rance, McKay and Grayden, 2004
(Ear & Hearing)

e Compared children with normal
hearing, SNHL, and ANSD

e Measured

- Frequency selectivity (simple notched
noise method)

— Sinusoid frequency discrimination
- TMTFs

- CNC word phoneme recognition
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Temporal resolution and temporal
frequency coding seems impaired
in ANSD

e And both correlate highly with
speech scores

e While auditory filtering seems near-
normal in many of the ANSD subjects



A model of temporal resolution -
the temporal window
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FIGURE 5.10 The “shape” of the sliding temporal integrator (window). This is a weighting
function applied to the output of the nonlinear device. It performs a weighted running average
of the output of the nonlinear device. The shape is plotted on a linear scale as a function of
time.



A model of the auditory
periphery

inner temporal window
outer ear middle ear hair cells
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Hydraulic analogy: How long
before the next bucket leaves
for the brain?

a bunch of auditory nerve fibres

" wevwwwvwwe

to the brain

slow modulations



Hydraulic analogy: How long
before the next bucket leaves
for the brain?

a bunch of auditory nerve fibres

S —

to the brain

rapid modulations

(slides modified from Lynne Werner, U of Washington, Seattle)



A model of temporal resolution -
the temporal window
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FIGURE 5.10 The “shape” of the sliding temporal integrator (window). This is a weighting
function applied to the output of the nonlinear device. It performs a weighted running average
of the output of the nonlinear device. The shape is plotted on a linear scale as a function of
time.



The temporal
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gap detection seen through the temporal
window model

8.0 ms gap 4.0 ms gap 20 ms gap 1.0 ms gap 0.5 ms gap

input envelope

output excitation
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Effects of temporal window on
signals
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FIGURE 5.11 Examples of the influence of the sliding temporal integrator on the envelopes of
sounds. The panels on the left show inputs to the sliding temporal integrator. The panels on the
right show the corresponding outputs.

Decision device looks at evidence of level changes at output - a
model of within-channel temporal resolution



Envelope in speech — one source
of cues to consonants
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Neural synchrony AM detection
declines from declines from
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Key Points

e Measures of temporal resolution relate to
signal envelopes

e Measures must control spectral artefacts

e Gap detection and TMTF main measures
— Both indicate limits in region of 1 to 3 ms in
normal hearing
e Temporal window model can account
reasonably well for within-channel
temporal resolution




